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ABSTRACT
Smart glasses, such as Google Glass, provide always-
available displays not offered by console and mobile gam-
ing devices, and could potentially offer a pervasive gaming
experience. However, research on input for games on smart
glasses has been constrained by the available sensors to date.
To help inform design directions, this paper explores user-
defined game input for smart glasses beyond the capabilities
of current sensors, and focuses on the interaction in public
settings. We conducted a user-defined input study with 24
participants, each performing 17 common game control tasks
using 3 classes of interaction and 2 form factors of smart
glasses, for a total of 2448 trials. Results show that users
significantly preferred non-touch and non-handheld interac-
tion over using handheld input devices, such as in-air ges-
tures. Also, for touch input without handheld devices, users
preferred interacting with their palms over wearable devices
(51% vs 20%). In addition, users preferred interactions that
are less noticeable due to concerns with social acceptance,
and preferred in-air gestures in front of the torso rather than
in front of the face (63% vs 37%).
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INTRODUCTION
Smart glasses provide always-available displays and offer the
opportunity for instantly available information and pervasive
gaming experiences. Compared to game consoles and mo-
bile gaming devices, smart glasses do not have touchscreens
and currently do not support handheld controllers specifically
designed for gaming. Current smart glasses, such as Google
Glass and the Epson Moverio, support input via voice, touch-
pads, cameras, gyroscopes, accelerometers, and GPS. Games
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Figure 1. A study participant performing an in-air gesture to drag an
object seen through the immersive smart glasses in a public coffee shop.

designed specifically for Google Glass [25] utilize these sen-
sors as game control. For example, “Clay Shooter” utilizes
the user’s voice to trigger a shotgun, and “Shape Splitter” de-
tects in-air gestures via the built-in cameras. For the Epson
Moverio glasses, wired trackpads are used as handheld con-
trollers.

To better inform the interaction design of games for smart
glasses, we aimed to explore the design space without being
constrained by the capabilities of current sensors. We used
the guessability study methodology [40], and presented the
effects of game controls to the participants in a real-world,
public environment. We then elicited what the participants
felt was the most appropriate causes to invoke the corre-
sponding effects.

For input tasks, we analyzed 90 popular games to identify the
game controls used by more than one game, which resulted
in a set of 17 tasks. We also explored the form factors of
smart glasses displays, and included both types in the study:
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Figure 2. (A) Epson Moverio, (B) Google Glass.



1) immersive, with display content spanning the user’s field
of view (e.g. Epson and Sony’s smart glasses), and 2) off-to-
the-side, with display content in the corners of the user’s field
of view (e.g. Google Glass).

In order to compare different types of interaction while keep-
ing the experiment tractable, we grouped the different types
of input into the following 3 classes:

• handheld: input types that make use of handheld con-
trollers, such as smartphones and the wired trackpads used
by Sony’s SmartEyeglass and Epson’s Moverio glasses.

• touch: non-handheld touch input, such as gesturing and
tapping on body surfaces, and touch-sensing wearable de-
vices (e.g. smart rings, watches, and glasses). These pro-
vide tactile feedback.

• non-touch: non-handheld, non-touch input, such as in-
air gestures, head/body movement, and voice recognition.
These do not have tactile feedback.

We recruited 24 participants and asked them to wear the two
form factors of smart glasses in a coffee shop. On-screen
instructions prompted participants to perform each of the 17
common game control tasks using the 3 classes of input types.
For each game control task, form factor, and input type, par-
ticipants first explored all possible interactions they could
think of, then reported the one they most preferred. After
completing the 3 types of interactions for that task and form
factor, they then rated their preferences for 3 interactions.
Overall, each participant reported 102 interactions, for a total
of 2448.

We collected quantitative and qualitative data through video
analysis, preference ratings, and interviews. Our key obser-
vations are as follows:

• Participants significantly preferred non-handheld, non-
touch interactions over handheld interactions (3.81 vs 3.68
on a 5-point Likert scale, p<0.01).

• For touch input without using handheld devices, users pre-
ferred interacting with their body surface over wearable de-
vices (80% vs 20%), and the most frequently used body
surface was the palm (51%).

• Participants preferred interactions that are more subtle due
to concerns with social acceptance. Also, participants pre-
ferred using in-air gestures in front of the torso than in front
of the face (63% vs 37%), even though those gestures were
reported to be less intuitive and less precise.

• There is a significant mismatch between participants’ pre-
ferred input methods and those supported by the current
smart glasses. For example, less than 2% of the partici-
pants used voice and less than 2% of the participants used
touch input on the smart glasses – which are Google Glass’
two primary input methods. In addition, current cameras
can only detect in-air gestures in front of users’ faces, miss-
ing most 63% of the gestures performed.

The contribution of this paper are as follows: (1) the first
quantitative and qualitative characterization of user-defined

input for games on smart glasses, including a taxonomy, (2)
set of user-defined input for common game tasks, which is re-
flective of user behavior. (3) insight into users’ mental mod-
els when playing smart glasses games in a public space, and
an understanding of implications for mobile input technology
and user interface design. Our results will help designers cre-
ate better smart glasses gaming experience informed by user
behavior.

RELATED WORK

Game Input
There are many previous works exploring new kinds of game
controls and pushing the limit of game design. Vickers et
al.[38] showed the possibility to use eye gestures as game in-
puts; Christian et al.[6] provided novel techniques for users
to interact with games by head-gesture; Harada et al.[16] and
Sporka et al.[34] both indicated that the voice input greatly
expanded the scope of games that could be played hands-free
and just counted on voice input; Baba et al.[4] presented a
game prototype which treated skin contact as controller input;
Nacke et al.[28] even considered using biofeedback (includ-
ing EMG, EDA, EKG, RESP, TEMP) as game input methods;
Hsu et al.[19] compared different game inputs, including head
gestures, voice control, handheld controller, joysticks, eye
winking and glass touchpad, for First-Person Shooter(FPS)
games on smart glasses.

Mobile Input Technology
Some works related to mobile systems had defined designer-
made input methods. These systems could be divided into
two main categories, touch and non-touch inputs.

Harrison et al.[17] created OmniTouch, a wearable depth-
sensing and projected system that enables interactive multi-
touch applications on any surface of the user’s body. More-
over, Skinput[18], a technology that appropriates the human
body for acoustic transmission, and allows the skin to be used
as an input surface. Baudisch et al.[15] illustrated a con-
cept of imaginary interface with sensing several gestures on
the user’s palms. Recently, Serrano et al.[33] explored the
use of Hand-to-Face input to interact with head-worn dis-
plays(HWD) and provided a set of guidelines for developing
effective Hand-to-Face interactions based on two main fac-
tors they found, social acceptability and cultural effect.

Kim et al.[23] developed a wrist-worn architecture, which
supports discrete gesture recognition with reconstructing a
3D hand model in the air. Similarly, Jing et al.[20] imple-
mented Magic Ring, a finger ring shaped input device us-
ing inertial sensors to detect subtle finger gestures; Colaço et
al.[7] built a head-mounted display, Mime, sensing 3D ges-
tures in front of the user’s eyes.

Gestures in HCI
Gesture-based interfaces are already common in a variety of
application domains such as gaming, virtual or augmented
reality and mobile devices[22]. Aigner et al.[1] conducted a
study of human preferences in usage of gesture types for HCI
and indicated that, depending on the meaning of the gesture,
there is preference in the usage of gesture types; Nielsen et



al.[29] pointed out some important issues in choosing the set
of gestures for the interface from a user-centred view such
as the learning rate, ergonomics, and intuition; Grijincu et
al.[14] presented a video-based gesture dataset and a method-
ology for annotating video-based gesture datasets; Recently,
Piumsomboon et al.[30] have developed a user-defined ges-
ture set for augmented reality applications. In our work,
we focus on exploring relevant input gestures for gaming on
smart glasses in public space.

User Elicitation Studies
User-elicitation studies are a specific type of participatory de-
sign methodology that involves end-users in the design of
control-sets[27]. These studies had been used to design user
interfaces of various types including multi-touch gestures on
small and large surfaces[2, 41] and multi-modal interactions
[27, 24]. There is also some evidence that user-defined con-
trol sets are more complete than those sets defined solely by
experts[31, 41].

In a user-elicitation study, users were shown referents (an ac-
tion’s effects) and were asked to demonstrate the interactions
that resulted in a given referent[41]. In this work, we draw
upon the user-elicitation methodology to identify user expec-
tations and suggestions for smart glass gaming.

DEVELOPING A USER-DEFINED GAME INPUT SET

Overview
We developed a user-defined game input set by having 24 par-
ticipants perform game tasks with smart glasses. To avoid
bias from visual hints[9], no elements specific to PCs, con-
soles and mobile games were shown. Similarly, no specific
game title was assumed. Instead, participants acted in a sim-
ple blocks world of geometry shapes or in the shape of a basic
human avatar. Each participant saw the effect of a game in-
put (e.g. an object moving left and right) and was asked to
perform the game input action he or she thought would use to
cause that effect (e.g. performing an in-air gesture to drag the
object left and right, see Figure 1).

Seventeen game tasks were presented, and game inputs were
elicited for three different interaction methods (handheld,
touch, non-touch) with 2 smart glasses (Google Glass, Ep-
son Moverio). The system did not attempt to sense the user’s
input action, but we used a camera to record the whole pro-
cess. Participants used the think-aloud protocol and were in-
terviewed about the input details. They also provided subjec-
tive preference ratings.

The final user-defined game input set was developed in light
of the agreement found in the participants’ preferred input
action for each game task. The more participants that used
the same action for a given task, the more likely that input
action would be assigned to the task. In the end, our user-
defined game input set emerged as a surprisingly consistent
collection founded on actual user behavior.

Interaction Methods
In our study, we asked users to define three input manners
to satisfy three interaction requirements individually in each

# Task Used in Famous Game
1 Select single from many Clash of Clans, Plague Inc.
2 Vertical menu Puzzle&Dragon, PeggleHD
3 Horizontal menu Clash of Clans, PeggleHD
4 Move left and right Temple Run, Super Mario
5 Move in 4 directions 1943, RaidenX
6 Switch 2 objects Candy Crush, Bejeweled
7 Move object to position World of Goo, The Sim
8 Draw a path Draw Something, P&D
9 Throw an object (in-2D) Angry Birds, PeggleHD
10 Follow the beats RockSmith, Guitar Hero
11 Rotate an object (Z-axis) Zuma, PeggleHD
12 Rotate an object (Y-axis) Spore, The Sim
13 Avatar jump Temple Run, Super Mario
14 Avatar 3D move Spore, Tintin
15 Avatar attack Minecraft, Terraria
16 Avatar squat Temple Run, Minecraft
17 Control 3D viewport The Sim, Spore

Table 1. Summary of our general casual game task set. We named sev-
eral famous games which use these tasks.

task. These three interaction types, classified according to
familiar interactions explored by previous works, were hand-
held, touch, and non-touch. handheld, one of these types,
required users to create a game input by interacting with
common portable handheld devices, mobile phones. Another
method was touch, which asked users to design an input ac-
tion by touching any skin, clothes or accessories on their own
bodies. The last method, non-touch, was that users were
asked to define an input method without touching any tan-
gible object, such as, moving eyeballs, rotating their heads,
voice control or in-air gestures.

Game Tasks
Casual game is one of the game categories with the most play-
ers[11], and it is shown high potential in public gaming[32,
5]. We chose top 90 casual games[36] from existing plat-
forms, including PCs, consoles and mobile games (30 games
for each) by crawling and analyzing the sale and download
count data from famous gaming websites[3, 37, 35, 12]. We
invited 3 experienced game developers to review these top
90 casual games. In these games, they found 26 game tasks
in total, and removed 9 tasks which were only used once in
specific games. Finally, we got a set of general casual game
task (shown in Table 1) with 17 tasks, which can completely
support 90% of our top casual games.

Form Factor of Glasses
We explored the form factors of smart glasses displays, and
included both types in the study: 1) immersive, with display
content spanning users’ field of view (e.g. Epson Moverio),
and 2) off-to-the-side, with display content in the corners of
users’ field of view (e.g. Google Glass). The display of
the Epson Moverio is located in front of the user’s eyes with
960 × 540 resolution[10]. And Google Glass locates its dis-
play above the user’s right eye with 640× 360 resolution[13]
(see Figure 2).

Participants



Method Mean Std. L.Bound U.Bound
handheld 3.68 0.79 3.63 3.74
touch 3.77 0.81 3.72 3.83
non-touch 3.81 0.90 3.75 3.87

Table 2. Summary of user preference of 3 different interaction methods,
it provides mean value, standard deviation, and 95% confidence interval
for mean (Lower Bound and Upper Bound).

We recruited twenty-four participants with an equal male-
female ratio for our study. Their average age was 23.2 (sd
= 2.72). All participants are right-handed and none of them
had past experience with smart glasses usage. About their
gaming experience, according to our investigation, 14 users
were daily game players, 9 were weekly players and 1 was a
monthly player. Participants spent 1.36 hours (sd = 0.89) on
average to play games one time. Moreover, 58% of them indi-
cated that their main gaming platforms were mobile phones,
38% were on PCs, and only 4% were on consoles. Another
important factor of the gaming experience is the user’s famil-
iarity with game controllers. The results showed that average
familiarity scores were 2.50 for gamepad (sd = 1.24), 3.96
for touchscreen (sd = 0.62) and 4.22 for keyboard and mouse
(sd = 0.74) on a 5-point Likert Scale for degree of familiarity
(1 means very unfamiliar, 5 means very familiar).

Environment
According to the previous works[39, 26], the social accept-
ability of mobile-input was influenced by whether partici-
pants believed a bystander could interpret the intention of the
input action. Therefore, to provide a game input set suited for
a real-world environment, we chose a Starbucks cafe near our
college. The visitor flow of the cafe, on average, was 72.5
persons per hour. In our investigation, participants indicated
that the cafe was comparatively a public space with average
4.17 points (sd=0.65) on a 5-point Likert Scale for degree of
field publicity (1 means very private, 5 means very public).

Procedure
Participants wore two different glasses (Google Glass and Ep-
son Moverio) and our software randomly presented 17 game
tasks (Table 1) to participants. For each game task, partic-
ipants performed an input action in 3 different interaction
methods (handheld, touch and non-touch interaction). The
study was conducted using a counterbalanced measures de-
sign, alternating the glass’s form and the interaction method.
After each game input, participants were shown a 5-point Lik-
ert scale concerning subjective preference and conducted a
short interview about input detail. With 24 participants, 17
game tasks, 2 glass forms and 3 interaction methods, a total
of 24× 17× 2× 3 = 2448 game input actions were made.

RESULTS
Our results include game input taxonomies, a user-defined
game input set, user ratings, subjective responses, and quali-
tative observations for each interaction method.

Preference Between Interaction Methods
Table 2 shows the average rating of 3 interaction methods.
Three interaction types had a significant rating difference

(F0.05(2, 2445)=4.61, p = .01). We found that the user rat-
ing preference for non-touch was significantly higher than for
handheld (p = .009). And we didn’t find a significant differ-
ence between touch and non-touch (p = .688).

In the interview conducted after the rating, we asked why
users gave handheld a lower preference score. The general
reason was that users had to take their controller, e.g. phone,
out of their pocket first. Users thought the handheld controller
was not always-available and was not hands-free compared to
the other interaction methods in this study. After analysing
the video recording, we found that most participants simply
used the handheld device as a trackpad. In addition, the user
behavior and mental model were similar to the previous work
by Liang et al.[24]. Considering the users’ preferences and
the reasons mentioned above, our report will focus on the re-
sults of touch and non-touch interaction.

Behavior with Different Form Factor of Glasses
In our study, for each of the two glasses, there are 1224 game
input pairs with the user, task and interaction method. We
found 119 pairs of game input (9.72% of all) were designed
differently with distinct smart glasses forms. The influence of
game input in each interaction method was 1.22% for hand-
held, 7.35% for touch and 20.59% for non-touch.

While using non-touch as interaction method, users who de-
signed distinctive game input action mentioned that they were
eager to use direct control and perfom a in-air gesture in front
of the screen with the Epson Moverio. However, it is diffi-
cult to perform the same input with Google Glass because of
the small screen size. On the other hand, users’ reasons to
define different input action with different glasses for touch
and handheld interaction methods seem to be random as users
were unable to motivate their choice to define a different input
action.

Although the form factor of smart glasses influenced the de-
sign of game inputs, there was almost no difference in the
user preference ratings for user-defined game inputs between
the 2 different glasses: (F0.05(1, 2446)=.36, p=.549).

Classification of Game Inputs
Taxonomy of Game Input
As the authors, we manually classified the input actions along
four dimensions: form, binding, nature, and flow. Within
each dimension, there are multiple categories as shown in Ta-
ble 4. To verify the objectivity (or inter-rater reliability), we
invited an independent rater who performed the same catego-
rization using 170 trials (10 trials were randomly selected for
each task). The inter-rater reliability is shown in Table 3. The
lowest Kappa value, .688, is greater than .6, which is rated
as substantial and thus is sufficient to establish the validity
of the categorization. In addition, the average Kappa value is
.897. A Kappa value of .8 and higher is considered almost
perfect[21].

The scope of the Form dimension is applied separately to dif-
ferent interaction methods. There are 11 Form categories with
touch input. 4 of them (palm, back of hand, forearm, wrist)
are performed with both hands. 2 of them (leg, face) use a



# Task Kappa Value
1 Select single from many 0.863
2 Vertical menu 1.000
3 Horizontal menu 0.688
4 Move left and right 0.825
5 Move in 4 directions 1.000
6 Switch 2 objects 0.804
7 Move object to position 1.000
8 Draw a path 1.000
9 Throw an object (in-2D) 1.000

10 Follow the beats 0.697
11 Rotate an object (Z-axis) 0.867
12 Rotate an object (Y-axis) 1.000
13 Avatar jump 0.867
14 Avatar 3D move 0.880
15 Avatar attack 1.000
16 Avatar squat 0.878
17 Control 3D viewport 0.878

Average 0.897
Table 3. Inter-rater reliability for each task.

single hand to interact with other body parts. fingers is a sin-
gle hand input and it is merely an interaction between fingers,
e.g. a pinch. And rest of them (ring, watch, glasses, neck-
lace) are interactions with accessories. There are 4 form cat-
egories with the non-touch interaction method. Finger is a
special case of hand, but it is worth distinguishing because of
its similarity to mouse actions and direct-touch.

In the Nature dimension, symbolic inputs are visual depic-
tion. For example, a user poses the v-sign in the air in order
to select menu option 2, or forms his hand as a gun to throw
an object. physical inputs with the virtual object should be
similar to the real world interaction with the physical object.
metaphorical inputs occur when an input acts on, with, or like
something else. For instance, users trace a finger in a circle to
simulate the “object rotation”, or view the palm as a trackpad
to perform gestures. As it should be, the input itself is usu-
ally not enough to reveal its metaphorical nature; the answer
lies in the user’s mental model which could be understood
by the interview afterwards. Finally, abstract inputs have no
symbolic, physical, or metaphorical connection to their game
tasks. The mapping is arbitrary, which does not necessarily
mean it is poor. Pinch-touching thumb and index finger to
perform “avatar jump”, for example, would be an abstract in-
put.

The Binding dimension is defined as the relationship between
the input area and the smart glass’s screen. direct binding
means the user performs the inputs in the screen region di-
rectly, such as using an in-air gesture right in front of the
screen to drag or touch virtual objects. A game input bind-
ing is called a surface binding if the user absolutely maps the
screen onto another surface and performs the game inputs on
it. Dragging a finger on the palm to move the object on the
screen, for example, is a surface binding input. For inputs
categorized as independent inputs it means that there is no
binding between the screen and the input area. Thus the input
can be performed in any position, like the “pinch to jump”.

Taxonomy of Game Inputs
Form palm I.b. finger and palm.
(touch) fingers I.b. fingers.

leg I.b. finger and leg.
back of hand I.b. finger and back of hand.
forearm I.b. finger and forearm.
face I.b. finger and face.
wrist I.b. finger and wrist.
ring I.b. finger and ring.
watch I.b. finger and watch.
glasses I.b. finger and glasses.
necklace I.b. finger and necklace.

Form finger Using finger to perform in-air gesture.
(non-touch) hand Using hand to perform in-air gesture.

head Using head to perform input.
voice Using voice control.

Binding direct Directly control in front of screen.
surface Absolute mapping screen to surface.
independent No binding b. screen and input.

Nature symbolic Input visually depicts a symbol.
physical Input acts physically on objects.
metaphorical Input indicates a metaphor.
abstract Input mapping is arbitrary.

Flow discrete Response occurs after the user acts.
continuous Response occurs before the user acts.

Table 4. Taxonomy of game inputs based on 2448 input actions. The abbre-
viation “I.b.” means “Interaction between”. The abbreviation “b.” means
“between”.

A game input’s Flow is discrete if the input is performed, de-
limited, recognized, and responded to as an event. An exam-
ple is punching in the air to perform “avatar attack”. Flow is
continuous if ongoing recognition is required, such as during
most of our participants’ “Control 3D viewport” rotating the
imaginary camera by hands.

Taxonometric Breakdown of Input Actions in our Data
We found that our taxonomy adequately describes even
widely differing input actions made by our users. Figure 3
and 4 show for each dimension the percentage distribution
between the categories. The Form dimension for touch in-
put and the the Form dimension for non-touch input are both
dominated with hand related input. And Form dimension
for touch input is consisted of On-Body(80.3%) and Wear-
able(19.7%) interaction. We found that the forms of touch in-
puts are more complicated than those of non-touch. Nonethe-
less, the binding of touch is more consistent. About 75% of
the inputs are independent of the screen. In addition, we were
surprised that no user designed a direct binding or physical
nature input with touch input. And we found that for the Flow
dimension, the percentage distribution is similar to touch and
non-touch interaction.

User-Defined Game Input Set
The goal of this work is to present a user-defined game in-
put set for smart glasses used in a public environment. This
section gives the process by which the set was created and
properties of the set. Unlike the input sets for existing games
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Figure 3. Percentage of game inputs in each taxonomy dimension with
touch interaction. The “others” on the form dimension is consisted of
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Figure 4. Percentage of game inputs in each taxonomy dimension with
non-touch interaction.

on smart glasses, the set we have found is based on observed
user behavior.

Agreement
All 24 participants have provided game input for each and
every game task, smart glasses form and interaction method.
For each game task, we made groups of identical actions used
by participants. Group size was then used to compute an
Agreement Score that reflects the consensus among partici-
pants regarding the action used for a certain game task. A task
with a .31 agreement score means that, two randomly picked
participants will have a 31% chance to perform an identical
input action for this task. The definition and formula of the
agreement score can be found in previous work. [40].

A =

∑
tεT

∑
Pi⊆Pt

(
|Pi|
|Pt|

)2

|T |
(1)

In eq. 1, t is a task in the set of all tasks T , Pt is the set of
proposed input actions for task t, and Pi is a subset of iden-
tical input actions from Pt. The range for A is

[
|Pt|−1, 1

]
.

As an example, consider the agreement for draw a path with
touch input, it had four groups of identical input actions with
group sizes 34, 4, 5 and 5. we compute

Atouch−path =

(
34

48

)2

+

(
4

48

)2

+

(
5

48

)2

+

(
5

48

)2

= 0.53

(2)

The participant agreement for our study is pictured in Fig-
ure 5. The overall agreement for touch and non-touch inputs
were Atouch=0.25 and Anon−touch=0.27, respectively. When
comparing the agreement of touch and non-touch inputs, we
clearly see that their patterns are extremely similar. The av-
erage difference of agreement between these two interaction
methods was .056. This implies that the agreement score was
influenced more by the game tasks than by the interaction
methods.
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Figure 5. Agreement for each game task. The tasks are listed in the same
order as they appear in Table 1.

Properties of the User-defined Game Input Set
The user-defined game input set was developed by taking the
largest groups with identical input actions for each game task
and assigning those actions to the game tasks. The resulting
user-defined game input set covers 41.32% and 40.07% of all
game inputs proposed for both the touch and the non-touch
interaction class respectively. Our user defined set is useful,
therefore, not just for what it contains, but also for what it
omits.

All the inputs in our final touch input set are finger based (see
Figure 7). Most of them use a single finger tip to perform
gestures on different surfaces. The most preferable surface
for touch input is the hand palm. This way, the hand palm
acts as a trackpad or a proxy touch-screen. The other touch
inputs are finger interactions with single hand. More specifi-
cally, participants used their thumb to interact with their index
finger or the ring on the finger.

For non-touch input set (see Figure 8), even though we in-
formed users beforehand that they were not limited to using
their hands when providing game input, the results show that



users still preferred to use hand input over voice control, eye
gestures and head tilting. Additionally, users would make use
of direct-control if they had to perform precise tasks, such as
selecting an object from many or moving an object to a spe-
cific position. On the other hand, for tasks with lower preci-
sion requirements, such as selecting a single option from 4 or
making an avatar jump, users would prefer using an indirect-
control. For examples: the user taps 4 different areas in front
of their chest or the user raises his hands slightly.

Taxonometric Breakdown of User-Defined Game Inputs
As expected, the taxonometric breakdown of the final user-
defined game input set (Figure 7 and 8) is similar to the pro-
portions of all control actions proposed (Figure 3 and 4).
Across all taxonomy categories, the average difference be-
tween these two sets was only 5.61%, (touch input 6.31% and
non-touch input 4.91%, respectively).

Mental Model Observations
Social Acceptance and Input Area
To our surprise, approximately 63% of the in-air gestures
were not performed in front of the face (See Figure 9.2). This
behavior conflicts with the current “Google Glass” design.
There were 7 participants who performed most gestures in
front of their face. They indicated that input in front of the
face was more precise and intuitive. At the same time, the
other 17 participants preferred to perform in-air gestures in
front of or below their chest. Among them, there were 3 par-
ticipants who didn’t perform a single in-air gesture in front of
their face. These users indicated that moving a finger in front
of their face was weird and not socially acceptable. They also
noted that there was a hand fatigue problem if they had to lift
their hand in front of their face all the time, so they thought
that it was not suitable for gaming.

Bias by Existing Game Input
Although we were careful not to show elements from tradi-
tional game platforms like PCs, consoles and mobile games,
participants still often reasoned based on their previous gam-
ing experience. For example, some input actions were per-
formed as if using a touch-screen in front of their face (see
Figure 8{A,F,G}). Some actions were like using an imagi-
nary trackpad on an in-air surface or on the hand palm(see
Figure 7{B,D,E,H,I,K,N,Q} and Figure 8{H,I}). Even with
simple shapes and basic characters, it was clear how deeply
rooted the previous gaming experience is. Some quotes re-
veal this: “So I just click a button like on a game controller”,
“Can I just imagine there is a trackpad on my palm?” and
“It’s an imaginary touch-screen.”

Identical Gestures on Different Surfaces
In our study, we found several identical gestures performed
by our users on different surfaces. Take the task “Move in 4
directions” for example, although 57% of the gestures were
performed by moving a finger on the palm with touch in-
puts(Figure 7.E). The rest of the gestures were mostly using
identical gestures (moving a finger), but then on the differ-
ent surfaces such as the back of the hand, the leg, the fore-
arm and on the even face. The same phenomenon could also
be observed when comparing the game input of the user-
defined input set with touch and non-touch inputs for the

51%

10%12% 5%

7%

A

B C

D

E

F

9%

Figure 6. The top 6 touch input forms. Percentage indicates the por-
tion of touch input actions. (A)Interaction between finger and palm.
(B)Interaction between finger and ring. (C)Interaction between fingers.
(D)Interaction between finger and leg. (E)Interaction between finger
and back of hand. (F)Interaction between finger and watch.

tasks “Move left and right”, “Move in 4 directions”, “Draw
a Path”, “Throw an Object”. Participants used the hand palm
or an imaginary in-air surface. (See Figure 7 and Figure 8
{D,E,H,I}).
In these cases, the surface did not influence the meaning of
the gestures. We have asked users why they chose the palm
as their input area. The general response was that it required
the least physical movement, such as “I chose the left palm
to perform a gesture on because it is near to my right index
finger”.

DISCUSSION
Implications for Touch Input Technology
Our results showed that the hand palm was the most favorite
area for users to perform touch inputs on. Half of the game
inputs with touch input used a finger to perform a gesture
on the palm (See Figure 6). According to the mental model
mentioned above, users utilized the metaphor of a trackpad
and a touch-screen on the palm in several cases. Since this
metaphor leads to the same input actions as on trackpads and
touch-screens, current gesture interpreting algorithms like
Dollar N[8] could be employed here.

Implications for Non-Touch Interaction Technology
For non-touch interaction methods, our taxonomy shows that
performing in-air gestures with fingers and hands are still the
dominant forms for smart glass gaming (Figure 9.1{A,B}).
There was only a small number of participants that used
head-gestures, eye-gestures or voice controls, 7%, 3% and
1% respectively. Before our study, both Google Glass and
Mime[13, 7] supplied their own in-air gesture sets to increase
the diversity of their input. However, our results show that
63% of the in-air gestures are not performed in front of the
user’s face in the public space due to the social acceptance is-
sues and physical tiring problems mentioned before (see Fig-
ure 9.2). Therefore, if the developers of head-worn devices
want to implement in-air gestures for input, they will need to
have the capability to sense gestures in a wide range of areas
near the user other than only right in front of the face. Take
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Figure 7. The user-defined game input set with touch inputs. The percentages indicate the portion of users who performed the pictured input action
for the game task. Note that, there are 3 tasks (“Move in 4 directions”, “Avatar 3D Move”, and “Control 3D viewport”) have been assigned with an
identical input action.
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CV-based sensing technologies for example, instead of a reg-
ular lens, we could use a wide-angle lens or fish-eye lens to
implement a system to cater to the user’s preference.

A
55%

B 34%

49 %

37 %

14 %

C 7%

D 3%

1 2

Figure 9. 1. The top 4 non-touch interaction forms. Percentages indi-
cate the portion of non-touch game inputs that consisted of the pictured
input. (A) Using a finger to perform an in-air gesture. (B) Using the
full hand to perform an in-air gesture. (C) Using head-tilting or rotating
to perform game input. (D) Using eye-gestures to perform game input.
2. The distribution of the in-air gesture input area. Half of the in-air
gestures (49%) were performed in front of the chest, 14% in front of or
below the belly, and only 37% of the gestures were performed in front of
the face.

Implications for Game Design
According to the agreement scores we found that, no matter if
using touch interaction or non-touch input, the average agree-
ment between users was only .26, and the highest agreement
was just about .55 (see Figure 5). In this case, guessing the
game inputs would become a frustrating experience for play-
ers. It indicated that game developers should design the visual
guide carefully to lead users performing the input action, or
show an instruction to explain the input methods.

Contribution to non-gaming scenarios
When we first set out to explore interaction design for smart
glasses, we focused on a specific domain in order to gain
deeper insight and to keep the study tractable. Looking back
at the results, some the study findings do apply to non-gaming
scenarios. For example, many of our tasks are also used in
non-gaming applications, such as “Select single from many”,
“Vertical menu”, “Horizontal menu”, “Move left and right”,
“Move in 4 directions”, “Move object to position”, “Draw
a path” and “Rotate an object”. Also, study results showed
several facts that are useful for general cases: (1) Social ac-
ceptance of input is a significant concern in public space; (2)
Performing in-air gestures in front of the face is weird and
not socially acceptable; (3) If the input surface does not have
an influence on the meaning of the gestures, users prefer to
perform the gestures on a surface reached with least physical
movement.

Limitation and Next Steps
As we know, there are many different places known as pub-
lic space, and users may behave differently in each specific
place. Furthermore, in our study, we did not ask users to
define any input actions to interact with tangible objects in
public space, such as, tables or chairs in the cafe shop. We

only made participants experience two types of smart glasses.
Therefore, our user-defined game input set might not be suit-
able to be applied to games on other types of head-worn de-
vices. Moreover, our participants were all literate Taiwanese
adults; undoubtedly, children, elders, participants from other
cultures, or uneducated participants would behave differently.
That is to say, these issues are worthy of investigation, but ex-
ceed the range of our current work.

An important next step is to validate our user-defined game
input set with a wearable system, which can sense all touch
and non-touch input actions listed in our set.

CONCLUSION
This paper explored user-defined game input for smart glasses
beyond the capabilities of current sensors, and focused on
gaming interaction in a public setting. We conducted a user-
defined input study with 24 participants, each performing 17
common game control tasks using handheld, touch and non-
touch interaction methods with two form factors of smart
glasses in a public cafe, which lead to a total of 2448 game
inputs. Our results indicate that participants significantly
preferred non-touch interactions over handheld interactions
(3.81 vs 3.68, p <0.01). And the most frequently used body
surface was the palm (51%). Also, participants preferred us-
ing in-air gestures in front of the torso over gestures in front
of the face(63% vs 37%) due to concerns with social accep-
tance and the hand fatigue issue. Furthermore, we indicated
the mismatch between participants’ preferred input methods
and those supported by current smart glasses. Finally, we
presented insight into users’ mental models, and an under-
standing of implications for mobile input technology and user
interface design. This work represents a necessary step in
bringing glasses gaming closer to the hands and minds of
smart glasses users.
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